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Abstract: This article describes the combination of multivariate Ganger causality analysis, temporal
down-sampling of fMRI time series, and graph theoretic concepts for investigating causal brain net-
works and their dynamics. As a demonstration, this approach was applied to analyze epoch-to-epoch
changes in a hand-gripping, muscle fatigue experiment. Causal influences between the activated
regions were analyzed by applying the directed transfer function (DTF) analysis of multivariate
Granger causality with the integrated epoch response as the input, allowing us to account for the
effects of several relevant regions simultaneously. Integrated responses were used in lieu of originally
sampled time points to remove the effect of the spatially varying hemodynamic response as a con-
founding factor; using integrated responses did not affect our ability to capture its slowly varying
affects of fatigue. We separately modeled the early, middle, and late periods in the fatigue. We adopted
graph theoretic concepts of clustering and eccentricity to facilitate the interpretation of the resultant
complex networks. Our results reveal the temporal evolution of the network and demonstrate that
motor fatigue leads to a disconnection in the related neural network. Hum Brain Mapp 30:1361–1373,
2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

The role of networks in brain function has been increas-
ingly recognized over the past decade [Friston et al., 1993;
Sporns et al., 2004]. In functional neuroimaging, brain

networks are primarily studied in terms of functional
connectivity (defined as temporal correlations between
remote neurophysiologic events) and effective connectivity
(defined as the causal influence one neuronal system exerts
over another) [Friston, 1995]. Though the two prominent
approaches to characterizing effective connectivity—struc-
tural equation modeling [McIntosh et al., 1994) and
dynamic causal modeling [Friston et al., 2003]—have their
advantages and disadvantages, neither of them incorporate
information on temporal precedence, which may be con-
sidered as a necessary condition for causality. Also, these
techniques require an a priori specification of an anatomi-
cal network model and are therefore best suited to making
inferences on a limited number of possible networks.
Recently, an exploratory structural equation model
approach that does not require prior specification of a
model was described [Zhuang et al., 2005]. However with
increasing number of regions of interest, its computational
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complexity becomes intractable and the numerical proce-
dure becomes unstable. These disadvantages can largely
be circumvented by methods which are based on the
cross-prediction between two time series such as Granger
causality [Granger, 1969].
With fMRI data, recent studies have applied Granger

causality analysis between a target region of interest (ROI)
and all other voxels in the brain to derive Granger causal-
ity maps [Abler et al., 2006; Goebel et al., 2003; Roebroeck
et al., 2005]. A major limitation of applying the target ROI
based approach to neuroimaging data is that it is a bivari-
ate method and ignores interactions between other ROIs in
the underlying neuronal network leading to an oversimpli-
fication of the multivariate neuronal relationships that exist
during the majority of cognitive tasks. Simulations by Kus
et al. [2004] have shown that a complete set of observa-
tions from a process have to be used to obtain causal rela-
tionships between them and that pair-wise estimates may
yield incorrect results. To date, multivariate measures of
Granger causality have been largely limited to electrophys-
iological data [Blinowska et al., 2004; Ding et al., 2000;
Kaminski et al., 2001; Kus et al., 2004] although multivari-
ate autoregressive models have been used to infer func-
tional connectivity from fMRI data [Harrison et al., 2003].
We have previously presented preliminary forms of the
study described here [Deshpande et al., 2006a,b].
A critical consideration for fMRI data is the limitations

imposed by the hemodynamic response. The fMRI
response is dictated by the sluggish hemodynamic
response, which is believed to be spatially dependent
[Aguirre et al., 1998; Handwerker et al., 2004; Silva et al.,
2002]. Given that the hemodynamic response takes 6–10 s,
Granger causality analysis applied to the measured raw
time series sampled with a TR on the order of a second
may be contaminated by regional differences in the hemo-
dynamic response. We alleviate the effect of spatially vary-
ing hemodynamic delay by focusing on the causal relation-
ships at a temporal scale much coarser than the hemody-
namic response. Neuronal processes such as fatigue,
learning, and habituation evolve slower than the hemody-
namic response and are amenable to a coarse temporal
scale causal analysis.
Another consideration is that multivariate causality rela-

tionships can be difficult to interpret and to compare
across data sets. With several anatomical regions included
in a network, the possible number of interconnections
between them increases quadratically. The complexity of
the problem is further increased by our desire to character-
ize the temporal evolution of these network interactions.
Graph theoretic concepts are well suited to represent the
information present in these networks. Graphical represen-
tations for fMRI-derived causal neuronal networks were
introduced recently in the context of studying unmeasured
latent variables in effective connectivity analysis [Eichler,
2005]. The utility of graphical models in characterizing the
topology of large networks has been demonstrated in the
case of anatomical networks in macaques [McIntosh et al.,

2006], and functional networks obtained from MEG [Stam,
2004] and EEG [Fallani et al., 2006; Sakkalis et al., 2006]. In
the present study, we have used the graphical representa-
tion for effective characterization of the network topology.
In addition to utilizing concepts such as clustering [Fallani
et al., 2006; Sakkalis et al., 2006; Stam, 2004], we introduce
the application of eccentricity analysis to determine the
ROIs having a major influence on the network.
In this work, we have adapted the directed transfer

function (DTF) which was recently introduced as a causal
multivariate measure for EEG [Kus et al., 2004]. The DTF
is based on Granger causality, but is rendered in a multi-
variate formulation [Blinowska et al., 2004] and hence is
effective in modeling the inherent multivariate nature of
neuronal networks. For our application, we used the prod-
uct of the non-normalized DTF and partial coherence to
emphasize the direct connections and de-emphasize medi-
ated influences. This procedure has been shown to be ro-
bust [Kus et al., 2004] although equally good options such
as conditional Granger causality exist [Chen et al., 2006].
Using an extended period of fMRI data collected during a
fatigue experiment [Peltier et al., 2005], we extracted the
area under each epoch to form a summary time series
which captures the epoch-to-epoch variation. The rationale
was that this is more likely to reflect the physiological pro-
cess of fatigue and also alleviates the effect of the spatially
varying hemodynamic delay. This fact was substantiated
using simulations. Further, we investigated the changes in
the dynamics of the networks as the subjects progressively
fatigued, demonstrating the utility of this approach.

MATERIALS AND METHODS

MRI Data Acquisition and Preprocessing

Ten healthy right-handed male subjects performed a
prolonged motor task while they underwent functional
magnetic resonance imaging in a 3T Siemens Trio (Siemens
AG, Berlin, Germany). Informed consent was obtained
prior to scanning and the procedure was approved by the
internal review board at Emory University. The subjects
performed repetitive right-hand contractions at 50% maxi-
mal voluntary contraction (MVC) level by gripping a bot-
tle-like device [Liu et al., 2002]. Online measurement of
handgrip force was accomplished by a pressure transducer
connected to the device through a nylon tube filled with
distilled water. For each subject, the target level of 50%
MVC was calculated based on the maximal grip force
measured at the beginning of the experiment. Visual cues
(a rectangular pulse whose profile matched the amplitude
and duration of the handgrip contraction) were generated
by a waveform generator and projected onto the screen
above the subject’s eye in the magnet to guide the subjects
in performing the contractions. Each contraction lasted 3.5
s, followed by a 6.5 s intertrial interval (ITI). The total fa-
tigue task comprised of 120 contractions lasting 20 min.
After the completion of the task, the level of muscle
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fatigue was determined by measuring the MVC handgrip
force. The choice of 50% MVC level was made so as to fa-
tigue the muscles in �10–15 min for the given length of
contraction and ITI. Echo planar imaging (EPI) data was
obtained with the following scan parameters: Thirty 4-mm
slices (no gap) covering from the top of the cerebrum to
the bottom of the cerebellum, 600 volumes, repetition time
(TR) of 2 s, echo time (TE) of 30 ms, a flip angle (FA) of
908, and an in-plane resolution of 3.44 3 3.44 mm2.
The data analysis for activation detection was carried

out using BrainvoyagerTM 2000 (Ver 4.9 � Rainer Goebel
and Max Planck Society, Maastricht, The Netherlands.
www.brainvoyager.com). Two subjects were excluded
from the analysis because of excessive head motion. Subse-
quent to motion and slice scan time correction, a reference
waveform derived based on the activation paradigm (Fig.
1) was correlated with each detrended voxel time series to
produce activation maps (Fig. 2). The correspondence of
the activation paradigm with a time series from the pri-
mary motor area is illustrated in Figure 1. As shown in
Figure 2, six ROIs—contralateral (left) primary motor (M1)
cortex, primary sensory cortex (S1), premotor area (PM),
ipsilateral (right) cerebellum (C), supplementary motor
area (SMA), and parietal area (P)—were identified from
the activation maps, and ROI specific average time courses
were obtained. Because of the overlap of activations in M1
and S1, these areas were delineated based on the location
of central gyrus [Yousry et al., 1997] by assigning the acti-
vations in the precentral gyrus as M1 and that in the post-
central gyrus as S1. SMA activation was taken to be medial
and the parietal activation included both medial and con-
tra-lateral activations in the posterior parietal cortex.
To investigate fatigue induced causal influences, the

area under the time course of each epoch was calculated
as a summary measure and a corresponding summary
time series was derived from the mean time series for each
ROI (Fig. 3). An epoch was defined as the duration con-
taining the contraction time and intertrial interval. The
underlying hemodynamic response in each epoch corre-
sponded to one contraction. Three nonoverlapping seg-
ments from the summary time series, each containing 40

points, was input into the multivariate Granger causality
analysis. The use of these windows allowed us to investi-
gate the temporal dynamics of the network.

Simulations

The purpose of the simulations was to show that hemo-
dynamic confounds can overwhelm long term effects,
leading to erroneous results and this confound can be
eliminated by analyzing the summary time series. Two
time series, R1 and R2, were simulated by assuming an

Figure 1.

A time series from M1 overlaid on the activation paradigm. Red: 3.5 s contraction. Blue: 6.5 s

intertrial interval. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 2.

A sample activation map obtained from the fatigue motor task

showing the regions of interest. n SMA,~M1, * S1, � P,3 PM.
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Figure 3.

Left: Original fMRI time series. Right: Summary time series (yellow patch shows the first time

window). [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure 4.

The temporal variation of significance value a (a 5 12P) for all possible connections between

the ROIs. The direction of influence, as indicated by the black arrow, is from the columns to the

rows. The red bars indicate the connections that passed the significance threshold of a 5 0.95

and the green ones that did not. [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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event-related paradigm consisting of 120 trials with an
epoch duration of 20 s. Each event was assumed to lead to
a HRF defined by two Gamma functions [Friston et al.,
1999] with the following parameters: sampling interval 5
2 s, dispersion of response 5 1 s, dispersion of undershoot
5 1 s, delay of response (relative to onset) 5 6 s, delay of
undershoot (relative to onset) 5 10 s, ratio of response to
undershoot 5 6, length of kernel 5 20 s. The HRF for R1

was assumed to be 1 s behind that of R2 (i.e., R2 leads R1).
The peak amplitudes for the trials in R1 and R2 were
modulated by slowly varying sinusoids, denoted by A1

and A2, with A1 leading A2 by one epoch. Because an
epoch is 20 s long, R1 leads R2 inspite of the 1 s hemody-
namic lead R2 has over R1. Gaussian noise (SNR 5 0, 5, 10,
and 100, 500 realizations each) was added to the simulated
signals to test the effect of random noise in the system.
Granger causality analysis was applied to raw time series,
R1 and R2, and the summary time series obtained by inte-
grating each epoch, C1 and C2. Because C1 and C2 are pro-
portional to A1 and A2, respectively, C1 leads C2.

Multivariate Granger Causality Analysis

The principle of Granger causality is based on the con-
cept of cross prediction. Accordingly, if incorporating the
past values of time series X improves the future prediction
of time series Y, then X is said to have a causal influence
on Y [Granger, 1969]. In the case of any two time series X
and Y, the efficacy of cross-prediction could be inferred ei-
ther through the residual error after prediction [Roebroeck
et al., 2005] or through the magnitude of the predictor
coefficients [Blinowska et al., 2004]. Both approaches are
equivalent and the analytical relationship between them is
given by Granger [1969]. In this section, we describe the
multivariate model of Granger causality used in this
study.
The Granger causality analysis was accomplished using

custom software written in MATLAB (The MathWorks Inc,
Massachusetts). A multivariate autoregressive (MVAR)
model was constructed from the summary time series of
the ROIs. In the following, an italic capital letter represents
a matrix with components corresponding to the ROIs and
the variable in the parenthesis indicates either time or tem-
poral frequency. Let X(t) 5 (x1(t),x2(t),. . .xk(t))

T be the data
matrix and xk correspond to the time series obtained from
the kth ROI. The MVAR model with model parameters
A(n) of order p is given by

XðtÞ ¼
Xp
n¼1

AðnÞXðt� nÞ þ EðtÞ ð1Þ

where E(t) is the vector corresponding to the residual
error. This form of MVAR is analytically proven to have a
unique solution [Caines et al., 1975; Granger, 1969]. Akaike
information criterion (AIC) was used to determine the
model order [Akaike, 1974]. Equation (1) can be rewritten
as follows

XðtÞ �
Xp
n¼1

AðnÞXðt� nÞ ¼ EðtÞ ð2Þ
Equation (2) was transformed to the frequency domain

resulting in

Xðf Þ dij �
Xp
n¼1

aijðnÞe�i2pfn

" #
¼ Eðf Þ ð3Þ

We designate aijðf Þ ¼ dij �
Pp
n¼1

aijðnÞe�i2pfn and A as the

matrix corresponding to elements aij. Here, dij is the Dirac-
delta function which is one when i 5 j and zero elsewhere.
Also, i ¼ 1 � � � k; j ¼ 1 � � � k, where k is the total number of
ROIs. Note that time domain matrices are represented by
bold letters and their frequency domain counterparts are
denoted by capital letters in normal font.

Xðf ÞAðf Þ ¼ Eðf Þ ð4Þ

Xðf Þ ¼ A�1ðf ÞEðf Þ ¼ Hðf ÞEðf Þ where Hðf Þ ¼ A�1ðf Þ ð5Þ

The transfer matrix of the model, H(f), contains all the in-
formation about the interactions between the time series
and hij(f), the element in the ith row and jth column of the
transfer matrix, is referred to as the non-normalized DTF
[Kus et al., 2004] corresponding to the influence of ROI j
onto ROI i. Least squares estimation [Tyraskis et al., 1985]
was used to solve for the prediction coefficients. This proce-
dure imposes a theoretical constraint that the number of
data points in each time series be more than the number of
MVAR parameters to be estimated (which is the square of
the number of time series for a first order model) [Kus
et al., 2004; Tyraskis et al., 1985].To emphasize direct con-
nections and de-emphasize mediated influences, H(f) was
multiplied by the partial coherence between ROIs i and j to
obtain direct DTF (dDTF) [Korzeniewska et al., 2003; Kus
et al., 2004]. Simulations provided by Kus et al. and Korze-
niewska et al. prove that dDTF is a robust measure capable
of de-emphasizing mediated influences. To calculate the
partial coherence, we first computed the cross-spectra using

Sðf Þ ¼ Hðf ÞVH�ðf Þ ð6Þ

where V is the variance of the matrix E(f) and the asterisk
denotes transposition and complex conjugate. The partial
coherence between ROIs i and j is then given by

h2
ijðf Þ ¼

M2
ijðf Þ

Miiðf ÞMjjðf Þ ð7Þ

where the minor Mij(f) is defined as the determinant of the
matrix obtained by removing the ith row and jth column
from the matrix S.
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The partial coherence between a pair of ROIs indicates
the association between them when the statistical influence
of all other ROIs is discounted. It lies in the range [0, 1]
where a value of zero indicates no direct association
between the ROIs. The direct DTF (dDTF) was obtained as
the sum of all frequency components of the product of the
non-normalized DTF and partial coherence as given in the
equation below.

dDTFij ¼
X
f

hijðf Þhijðf Þ ð8Þ

dDTF as defined above emphasizes the direct connections
between ROIs. Working in the frequency domain offers the
advantage of uncovering interactions in specific frequency
bands. In our data, we did not observe distinct frequency
specific patterns except that Granger causality remained
high in the lower frequencies and decreased with increas-
ing frequency. This is to be expected considering the fact
that the summary time series had higher spectral energy
in the low frequency band. Hence we summed all the fre-
quency components to obtain one dDTF value for every
connection. Methodologically, spectral methods have been
shown to be more robust to deviations from the stationar-
ity assumption [Granger, 1964].
It is to be noted that unlike previously reported studies

[Blinowska et al., 2004; Kaminski et al., 2001; Kus et al.,
2004], we avoided normalizing DTF so as to allow direct
comparison between the absolute values of the strengths
of influence. Normalization of DTF with respect to inflows
into any ROI as in Kus et al. [Kus et al., 2004] would make
such a comparison untenable. As described in the previous
subsection, the calculation of dDTF was carried out using
the summary time series in three nonoverlapping windows
so as to investigate the temporal dynamics of the network.
In addition, connectivity was also computed using the raw
time series for comparison.

Statistical Significance Testing

Analytical distributions of multivariate Granger causality
are not established because they are said to have a highly
nonlinear relationship with the time series data [Kaminski
et al., 2001]. Therefore, to assess the significance of the
Granger causality reflected by dDTF, we employed surro-
gate data [Kaminski et al., 2001; Kus et al., 2004; Theiler
et al., 1992] to obtain an empirical null distribution. The
original time series was transformed into the frequency
domain and their phase was randomized so as to be uni-
formly distributed over (2p, p) [Kus et al., 2004]. Subse-
quently, the signal was transformed back to the time do-
main to generate the surrogate data. This procedure
ensured that the surrogate data possessed the same spec-
trum as the original data but with the causal phase rela-
tions destroyed. dDTF was calculated between the surro-
gate data time series representing each ROI. Null distribu-
tions were derived for all possible connections between

the ROIs, in each time window and for every subject, by
repeating the above procedure 2,500 times. Therefore, cor-
responding to six ROIs (we had 30 possible links between
the ROIs) and three time windows, a total of 90 null distri-
butions were generated per subject. For each connection,
the actual dDTF was compared with its corresponding
null distribution to derive a P-value. To obtain group sig-
nificance inference, the P-values from individual subjects
were combined using Fisher’s method [Fisher, 1932] to
obtain a single P-value. This procedure was repeated for
each connection in the three temporal windows to obtain
significant connectivity networks. Using a Jarque-Bera test
for goodness-of-fit to a normal distribution, the distribu-
tion of path coefficients within a single time window and
the distribution of the difference in path coefficients were
determined to be normal. To assess the significance of the
change in path coefficients across different time windows,
a paired t-test was performed between windows 1 and 2
and between 2 and 3. The significance values were con-
trolled for multiple comparisons using Bonferroni correc-
tion [Miller, 1991].

Graph Analysis

The causal influences between the ROIs in a network
could in principle be represented as a weighted directed
graph, whose weights are represented by the dDTF value
for the corresponding link between the ROIs, the direc-
tion of the link being the direction of causal influence and
the ROIs themselves representing the vertices (or nodes)
of the network. As mentioned in the introduction, this
type of representation has been used to characterize net-
work topology of causal functional networks obtained
from MEG data [Stam, 2004] and EEG [Fallani et al., 2006;
Sakkalis et al., 2006]. In this study, we focus on clustering
and eccentricity. Although clustering has been used pre-
viously [Fallani et al., 2006; Sakkalis et al., 2006; Stam,
2004], we have adopted the concept of eccentricity from
graph theory [Edwards, 2000] and have shown its rele-
vance in interpreting the resultant networks.

Mathematical representation of a graph

A graph G is mathematically represented in the form of
a sparse matrix called the adjacency matrix [Skiena, 1990].
The adjacency matrix of the directed graph is a matrix
with rows and columns labeled by graph vertices (v), with
the dDTF value corresponding to the influence from vj to
vi in the position (vi,vj).

Clustering coefficient

One of the most important aspects of the topology of a
network is the role of the nodes as either drivers of other
nodes or being driven by other nodes. This is assessed by
the total strength of causal influence that is emanating
from or incident on the node. Correspondingly, cluster-in
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and cluster-out coefficients [Watts et al., 1998] are defined
as,

CinðiÞ ¼
Xk

j¼1

Gðvi; vjÞ for i ¼ 1 � � � k ð9Þ

CoutðjÞ ¼
Xk

i¼1

Gðvi; vjÞ for j ¼ 1 � � � k ð10Þ

where k 5 6 is the number of nodes in the network. Basi-
cally, Cin of a node is the sum of all the corresponding col-
umns of G and Cout is the sum of all corresponding rows.
While calculating clustering coefficients from the fatigue
data, the mean dDTF averaged over the subjects were used
as entries in the matrix G. Also, the analysis was carried out
separately for each of the three temporal windows.

Eccentricity

The eccentricity E(v) of a graph vertex v in a connected
graph G is the maximum geodesic distance between v and
any other vertex u of G. The geodesic distance between
two vertices in a weighted graph is the sum of the causal
influences along the shortest path connecting them. We
used the Floyd-Warshall algorithm for solving the all-pairs
shortest path problem [Cormen et al., 2001] to the find the
shortest path between any pairs of nodes. Given that
graph distance is measured in terms of the strength of
causal influence, the shortest path between two nodes indi-
cates the path along which maximum causal influence is
exerted. Eccentricity is related to the individual influence
of a vertex on the overall network performance [Skiena,
1990]. A vertex v is said to have a major influence on the
network performance if it has the maximum E(v) among
all vertices in the graph. Such a vertex, termed the major
node, wields maximum influence on network behavior.
The major nodes in each time window were ascertained to
infer the changing roles of brain regions.

RESULTS

Simulations

Table I lists the results obtained from the simulations.
Except when SNR 5 0, dDTF derived using integrated
time series reflects the correct connectivity (C1?C2). In
contrast, the connectivity derived using the raw time series
(R2?R1) is incorrect and appears to be more bidirectional
as opposed to unidirectional in case of the integrated time
series for lowers SNRs. At high SNRs, the ratio of dDTF
along the direction of minor influence to that along the
major influence is lower with the integrated time series
than with the raw time series.

Behavioral Data and Preprocessing

There was a significant decrease (P < 0.002) in hand grip
force measured after the motor task as compared to before

the task, indicating that significant muscle fatigue had
occurred. Of the eight subjects selected for analysis, behav-
ioral data was not available for two subjects due to techni-
cal difficulties. In the rest of the six subjects, the decrease in
hand grip force was 29% 6 11% [Peltier et al., 2005]. Figure
2 shows a sample activation map obtained by correlating
the fMRI time series with the reference waveform and the
ROIs selected for further analysis. A representative sum-
mary time series and the original time series that it is
derived from are shown in Figure 3. It can be seen that the
summary time series captures the slow epoch-to-epoch var-
iation and in this particular case represents an initial
increase and subsequent stagnation of the epoch response.

Multivariate Granger Causality

A model order of one was assigned based on the
Akaike information criterion [Akaike, 1974]. Because a
single time point in the summary time series corresponds
to the area under the corresponding epoch, the resulting
MVAR model represents epoch-to-epoch prediction. The
temporal variation of the significance values a (a 5 12P)
for connections between all pairs of ROIs is shown in Fig-
ure 4. The links that passed the significance threshold of
a 5 0.95 are represented by the bars in red while the con-
nections that did not pass the threshold are shown as
green bars. The network representation of the results in
Figure 4 is shown in Figure 5, where the significant con-
nections are shown as solid lines with their width reflect-
ing the statistical significance of the influence. It is to be
noted that the absence of a connection does not necessar-
ily imply that there is no causal influence between the
corresponding ROIs. A more lenient threshold or addi-
tional statistical power might render an insignificant con-
nection significant. The thresholded difference networks
between windows 1 and 2 and between windows 2 and 3
are shown in Figure 6, illustrating the shift in connectiv-
ity patterns. As a comparison, the networks obtained
from raw time series (using a model order one as deter-

TABLE I. Simulation results for raw time series and

coarse time series

Connection SNR 5 0 SNR 5 5 SNR 5 10 SNR 5 100

Raw time series
R1?R2 0.03 6 0.04 0.08 6 0.09 0.7 6 0.2 3.7 6 0.1
R2?R1 0.05 6 0.08 6.2 6 1.0 8.5 6 1.1 13.9 6 0.5
Coarse time series
C1?C2 0.4 6 0.6 20 6 3.4 28.1 6 2.9 38 6 0.8
C2?C1 0.4 6 0.4 0.6 6 0.5 2.1 6 0.9 6.8 6 0.3

Here, the connectivity values indicate the dDTF (summed connec-
tivity over the whole spectra) as well as its standard deviation
over all the realizations. C1 drives C2 and R1 drives R2 by con-
struction. The model obtained by coarse time series is more accu-
rate than the one obtained by the raw time series confounded by
hemodynamics.
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mined by the application of AIC to raw time series) are
depicted in Figure 7.
The computational times for different components of the

implementation on a 2.7 GHz Pentium 5 machine were as
follows. Calculating the summary time series for 600 vol-
umes took 2.93 s while dDTF calculation for each time
window took 1.28 s. The total runtime of the code will
depend on the number of times dDTF is calculated on the
surrogate time series.

Graph Analysis

Clustering coefficients

Table II lists Cin and Cout for the three windows. In the
first window, M1 was predominantly driven while S1 was
a strong driver. The other areas had a dual role in the
sense that they both received and transmitted information.

In the second window, S1 and cerebellum were strong
drivers. In the third window, while S1 and cerebellum
remained to be the main drivers, the absolute value of the
coefficients decreased for all ROIs, indicating a reduction
of network connectivity. This reduction, also evident in
Figure 5, indicates that as muscles fatigued, the connec-
tions in the motor network decreased.

Eccentricity

The primary sensory area was the major node in the first
window, while the cerebellum was the major mode in the
second and third windows. This is schematically repre-
sented in Figure 5 where the major nodes are marked in
black. This result indicates that S1 wielded maximum
influence on the network in the first window, and the
dominance of influence shifted to the cerebellum in the
second and third windows.

Figure 5.

A network representation of Figure 4. The significant links are represented as solid arrows and

the P-value of the connections are indicated by the width of the arrows. The major node in

each window is also indicated as dark ovals.

Figure 6.

Thresholded difference networks. Left: window 1–window 2. Right: window 2–window 3. Red

indicates positive difference whereas blue indicates negative difference.
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DISCUSSION

The simulation results support the argument that
Granger causality analysis could be confounded by hemo-
dynamic variability which could arise due to a multitude
of factors [Aguirre et al., 1998; Handwerker et al., 2004;
Silva et al., 2002]. In the simulation, this is demonstrated
by the fact that the simulated connections were incorrectly
identified by Granger analysis of raw time series but cor-
rectly identified by analyzing the summary time series.
The analysis of summary time course is robust in the pres-
ence of Gaussian noise. Fatigue is a slowly evolving
process [Liu et al., 2002a,b] and the causal influences
underlying fatigue can be assumed to lie on a coarser time
scale. Based on the simulation, it is prudent to use the
summary time series in the MVAR instead of the raw time
series to recover the long term causal influences due to fa-
tigue. An MVAR of summary time series represents epoch-
to-epoch evolution. Each epoch represents a contraction
and the area under it represents the net activity of an ROI
due to the contraction. Hence, epoch-to-epoch causal influ-
ence is interpreted as predicting the activities for future
contractions based on those for the current contraction.
According to Wei, subsampling weakens the magnitude

of Granger causality, but preserves the direction and tem-
poral aggregation may cause spurious Granger causality.
Their conclusion was based on the assumption that the
true causal influence is at a finer time scale than the sam-
pling resolution [Wei, 1982]. In contrast, given that fatigue
is a slowly evolving process, the long-term causal influen-
ces corresponding to the underlying neurophysiological
processes involving fatigue are occurring at a coarser time
scale than the sampling resolution. Therefore Wei’s conclu-
sion does not apply to the fatigue data.
The Granger causality results presented above reflect a

gradual shift in connectivity patterns across brain regions

during the course of prolonged motor task. During the
first time window, the network is highly interconnected as
illustrated by Figure 5. A high value of Cin for M1 and
Cout for S1 indicates that the neural network is predomi-
nantly driven by feedback mechanisms from the primary
sensory cortex. This pattern is consistent with the fine tun-
ing of motor responses with sensory feedback [Solodkin
et al., 2004]. The drive from the primary sensory to pri-
mary motor areas is particularly interesting in light of sim-
ilar findings in an electrophysiological study on isometric
contraction in monkeys [Brovelli et al., 2004]. Furthermore,
we know that all regions drive the primary motor cortex
through both direct (SMA, premotor cortex) and indirect
(parietal, cerebellum) anatomical pathways [Passingham,
1988; Strick et al., 1999]. Structural equation modeling by
Solodkin et al. [2004] found that the primary sensory cor-
tex weakly drove the primary motor cortex, but did not
exert causal influence on other brain regions. However,
our results suggest that S1 could have a strong causal
influence on M1. The fact that neither Cin nor Cout domi-
nates each other for the cerebellum and parietal areas
points to the existence of bidirectional connections between
these ROIs and the rest of the network and hence the

Figure 7.

Networks obtained from raw time series for the three windows. The significant links (P <0.05)

are represented as solid arrows and the P-value of the connections are indicated by the width of

the arrows.

TABLE II. Cluster-in and cluster-out coefficients for all

ROIs for the three windows

M1 SMA PM S1 C P

Window-1 Cin 19 15 7 9 16 11
Cout 8 13 7 25 10 13

Window-2 Cin 15 21 15 9 16 8
Cout 8 14 11 23 18 10

Window-3 Cin 11 13 9 9 15 8
Cout 7 8 9 18 14 9
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possibility of both top-down and bottom mechanisms of
influence.
As the motor task progresses into the middle temporal

window, regions that guide motor performance—the cere-
bellum, SMA, and premotor cortex—become more promi-
nent as indicated by their elevated clustering coefficients
as compared to those in the first window. These regions
are collectively responsible for timing motor responses,
response preparation, and sequencing responses [Deiber
et al., 1991; Gordon et al., 1998; Ivry et al. 1989; Passing-
ham, 1988; Tanji, 1996]. Although S1 is the major node in
the first window, the cerebellum becomes the major node
in the middle window. This shift in the role of the nodes
in the network suggests that participants have mastered
the motoric components of the task and are now primarily
focused on orchestrating these responses. The shift from
the primary sensory cortex to cerebellum also implies that
participants are less reliant on tactile feedback to guide
performance.
The network changes yet again during the final stages of

the experiment, but this shift is more subtle than before.
The network structure is largely consistent between the
middle and last windows. Most striking is the change in
magnitude; the causal strength of all connections as well
as the clustering coefficients decreases. Whereas the mid-
dle window most likely reflects learning (manifesting as
both the strengthening and paring of connections), the last
window only shows the weakening of connections. These
results are consistent with fatigue, which we have previ-
ously demonstrated to reduce interhemispheric connectiv-
ity [Peltier et al., 2005]. Although the neural network opti-
mized during the middle window remains largely intact,
the interregional causal strengths diminishes as fatigue
takes its toll.
It is to be noted that decrease in connectivity with fa-

tigue could be associated with a general decrease in activa-
tion. However, this is unlikely the case here since it was
found that while cross correlation with a seed in M1
decreased, the activation volume increased with fatigue
[Liu et al., 2005]. This is consistent with the fact that the
summary time series (i.e., the area of epochs) also tends to
increase with time. It is conjectured that more cortical neu-
rons need to be recruited in strengthening the descending
command or processing sensory information during fa-
tigue, which lead to increased activation volume. The acti-
vation pattern of newly recruited cortical neurons that are
not normally involved in nonfatigue muscle activities may
not closely interact, leading to reduced connectivity.
The nodes in the network considered here are not

intended as an exhaustive account of regions mediating
motor behavior. Only the neural regions demonstrating the
most significant activation were examined. Thus, subcorti-
cal regions such as the basal ganglia and red nucleus were
not addressed despite their influence on motor perform-
ance [Harrington et al., 1998; Liu et al., 1999]. Likewise,
thalamic activity was not modeled, even though most of
the corticocortical, corticocerebellar, and cerebellocortical

anatomical pathways are routed through the thalamus
[Jones, 1999].
Besides supporting the existing hypothesis on the neural

effects of muscle fatigue, our model demonstrates gradual
changes in neural communication patterns in the pro-
longed motor task. We propose that these changes reflect
slowly varying neurophysiological alterations caused by
fatigue. In addition to obviating the effect of the hemody-
namic response on the predictive model, our use of sum-
mary measure enabled us to match the temporal scale of
analysis with the temporal scale at which the underlying
physiology is likely to evolve. In addition, trial-by-trial
variability in BOLD data and performance measures
makes both susceptible to the influence of outliers and
other statistical pitfalls. Previous studies have circum-
vented this limitation with summary time series, such as
mean BOLD or mean reaction time by block [Toni et al.,
2002] or condition [Tracy et al., 2003]. The present frame-
work of analysis is expected to be useful in the investiga-
tion of other slowly varying neurophysiological processes
such as learning [Floyer-Lea et al., 2005], habituation [Pflei-
derer et al., 2002], chronic pain [Borsook et al., 2006], and
therapeutic effects [Schweinhardt et al., 2006].
Because the resulting networks have a complicated to-

pology, a manual perusal of every connection and their
interpretation is untenable. Therefore we have employed
graph theoretic concepts to unearth possible patterns of
communication in the network. This approach gives useful
insights about the changes in the connectivity patterns and
the contribution of individual and specific groups of ROIs
to network behavior. Although we have used only cluster-
ing and eccentricity to characterize network topology, sev-
eral other options exist within the framework of graph
theory such as connected components and path length
analyses [Skiena, 1990] which could potentially be used to
characterize the network.
One question worth asking is whether Granger causality

analysis of the raw ROI time series would lead to similar
results. Such an analysis was performed and led to a
greater number of paths that are less significant and ex-
hibit no clear driving node as compared to their corre-
sponding networks derived from the summary time series.
In addition, the networks obtained from the raw time se-
ries did not differ significantly between the three time win-
dows. This result indicates that analysis using summary
time series is likely more appropriate for capturing the
long-term influences during fatigue while that using the
raw time series may be sensitive to influences from TR to
TR or hemodynamic effects, which do not vary in the pro-
cess of fatigue.
A brief discussion of our methodology vis-à-vis SEM is

in order. While Granger causality is data driven, SEM
requires an a priori model. The exploratory SEM approach
[Zhuang et al., 2005] does not require an a priori model
and hence is appropriate for comparison with Granger
causality. However, with six ROIs, the exploratory SEM
becomes computationally intractable. Furthermore, for n
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ROIs, SEM can only estimate n(n 2 1)/2 path coefficients;
or 15 connections for six ROIs. The first window could not
be analyzed with SEM because it has 18 connections.
Therefore, instead of making a comparison with explora-
tory SEM, a comparison was made with SEM analysis
assuming the connectivity models derived from windows
2 and 3 using Granger causality analysis. SEM led to a
poor model fit (Root mean square error of approximation
>0.25, model AIC >135, Adjusted goodness of fit index
<0.6), supporting the results of Kim et al. [2007] that SEM
and Granger causality reflect contemporaneous and longi-
tudinal aspects of causality, respectively, and hence pro-
vide complementary information.
The selection of the order of the MVAR model could

have a bearing on the results. AIC [Akaike, 1974] and
Schwartz criteria (SC) [Schwartz et al., 1978] are most com-
monly used in literature. AIC is an asymptotically
unbiased estimator of the Kullback-Leibler discrepancy
(KLD) and it underestimates the KLD for higher model
orders, leading to an over fit [De Waele et al., 2003]. How-
ever, for lower model orders (as in our case), AIC is a
more accurate estimate. Application of Schwartz criterion
also yielded a model order of one. In addition to AIC and
SC, Rissanen’s Minimum Description Length (MDL) [Ris-
sanen, 1978], which is based on the entirely different con-
cept of information theory, also gave an order of one.
Therefore, the choice of order selection method is not criti-
cal for the present study.
Apart from integrating coarse temporal scale analysis

and graph theoretic concepts with multivariate Ganger
causality, we introduced some modifications to the existing
literature on multivariate Granger causality analysis which
are noteworthy. Unlike previous EEG applications of DTF
[Kus et al., 2004], we did not normalize the DTF values
with respect to the inflows at each node. Normalization
makes the value of DTF dependent on the inflow at each
node, and hence DTF values corresponding to connections
not involving the same receiving node cannot be compared
since the inflows into different nodes may be different.
Although normalization provides an intuitive appeal by
rendering the DTF values in the range (0, 1), it makes com-
parisons between connections untenable and the study of
dynamic evolution difficult.

CONCLUSIONS

In this article we have demonstrated the utility of an
integrated approach involving multivariate Ganger causal-
ity, coarse temporal scale analysis, and graph theoretic
concepts to investigate the temporal dynamics of causal
brain networks. Multivariate Granger causality allowed us
to factor in the effects of all relevant ROIs simultaneously.
The coarse temporal scale analysis obviated the effect of
the spatial variability of the hemodynamic response on
prediction and permitted us to study slowly varying neu-
ral changes caused by fatigue. Finally by applying graph

theoretic concepts, we obtained an interpretable characteri-
zation of the complicated network topology. We believe
that our integrated approach is a novel contribution to the
effective connectivity analysis of functional networks in
the brain. Application of this approach to motor fatigue
data revealed the dynamic evolution of the motor network
during the fatigue process and reinforced the notion of fa-
tigue induced reduction in network connectivity.
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